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Abstract. Let E be a subset of positive integers such that E∩{1, 2} 6= ∅. A weakly
mixing finite measure preserving flow T = (Tt)t∈R is constructed such that the set of
spectral multiplicities (of the corresponding Koopman unitary representation gener-
ated by T ) is E. Moreover, for each non-zero t ∈ R, the set of spectral multiplicities
of the transformation Tt is also E. These results are partly extended to actions of
some other locally compact second countable Abelian groups.

0. Introduction

Let G be a locally compact second countable Abelian group and let T = (Tg)g∈G

be a measure preserving action of G on a standard probability space (X, B, µ). The
spectral theory of dynamical systems studies the corresponding Koopman unitary
representation UT = (UT (g))g∈G in the Hilbert space L2

0(X, µ) := L2(X, µ) ª C
given by

UT (g)f := f ◦ T−g

(see [KaT]). Such a representation is completely characterized (up to unitary equiv-
alence) by a measure of maximal spectral type on the dual group Ĝ and a spec-
tral multiplicity function lT : Ĝ 3 w → lT (w) ∈ N ∪ {∞}. We denote by
M(T ) = M(UT ) the (essential) image of lT .

One of the most appealing open problems in the spectral theory of dynamical
systems can be stated as follows: when a unitary representation is unitarily equiva-
lent to a Koopman representation? Let us consider a weak version of this problem
by replacing the unitary equivalence with another (weaker) equivalence relation on
the set of unitary representations of G. It was introduced in [Fr] for the unitary
representations of Z. Two unitary representations U and V of G in Hilbert spaces
HU and HV respectively are called cyclicly isomorphic if there is a unitary operator
W : HU → HV such that the image under W of each U -cyclic subspace in HU is
a V -cyclic subspace in HV and vise versa. Based on the proof in [Fr] for G = Z it
is easy to see that if U and V have a continuous spectrum then they are cyclicly
isomorphic if and only if M(U) = M(V ). We thus come to the following natural
question which is called the spectral multiplicity problem:

which subsets E ⊂ N are realizable as E = M(T ) for an ergodic (or weakly
mixing) free action T?
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In the case G = Z the spectral multiplicity problem was studied by a number
of authors (see references in a recent survey [Le] and subsequent progress in [Ry2],
[KaL], [Da3]). It is proved, in particular, that a subset E ⊂ N is realizable if one
of the following is fulfilled: 1 ∈ E, 2 ∈ E or E = n · F for some n ≥ 2 and a
subset F ⊂ N with 1 ∈ F . It is believed that every subset of N is realizable. In the
case G = Z2, weakly mixing realizations of the subsets E 3 1 were constructed in
[Fi] and weakly mixing realizations of subsets {2, 4, . . . , 2n}, for each n > 0, were
constructed in [Ko]. For a large class of Abelian locally compact second countable
groups G including all countable groups and Rn, it was proved in [DaS] that there
exist weakly mixing G-actions with homogeneous spectrum of arbitrary multiplicity.

In the present paper we mainly consider the case when G = R.

Theorem 0.1 (Main theorem). Let E be a subset of positive integers such that
E ∩ {1, 2} 6= ∅.

(i) There is a weakly mixing finite measure preserving flow T = (Tt)t∈R such
that the set of spectral multiplicities of the Koopman unitary representation
generated by T is E.

(ii) For each non-zero t ∈ R, the set of spectral multiplicities of the Koopman
operator generated by the transformation Tt is also E.

Now Theorem 0.1(i) can be interpreted in the following way: every unitary
representation of R with continuous spectrum and such that M(U) ∩ {1, 2} 6= ∅ is
cyclicly isomorphic to a Koopman representation of R. Secondly, given a subset E ⊂
N such that E∩{1, 2} 6= ∅, denote by WE the set of weakly mixing transformations
S with M(S) = E. As was mentioned above, the set WE is known to be non-
empty. Theorem 0.1(ii) strengthens this fact: WE ∪ {Id} contains a one-parameter
subgroup.

Now we make some remarks concerning the proof of Theorem 0.1. The simplest
way to obtain flows with non-trivial spectral properties is to consider the suspen-
sions of ergodic transformations with non-trivial spectral properties. We recall
that the suspensions are special flows constructed under the constant function 1.
In other words, they are R-actions induced by Z-actions. In Section 1 we briefly
review properties of induced actions in a more general setting of pairs (G,H), where
G is a locally compact second countable Abelian group and H a closed co-compact
subgroup of G. Some of these properties were established in the original papers
by G. Mackey [Ma] and R. Zimmer [Zi]. By means of the inducing we can obtain
“cheaply” a realization of each subset E ⊂ N containing 1 as the set of spectral
multiplicities of an ergodic flow. Unfortunately, the condition 1 ∈ E is unavoid-
able within the class of suspension flows. Moreover, every suspension flow has a
non-trivial discrete spectrum. Therefore to construct weakly mixing realizations we
apply another approach. It is a continuous analogue of the realizations produced
in [Da3]. The desired flows are compact group extensions of either rank-one flows
(for realizations of sets E 3 1 in Section 4) or Cartesian squares of rank-one flows
(for realizations of sets E 3 2 in Section 5). Sections 2 and 3 contain some prelim-
inary material to understand the techniques used in Sections 4 and 5. In the final
Section 6 we partly extend Theorem 0.1 to actions of other non-compact Abelian
groups: connected groups, groups without non-trivial compact subgroups, groups
containing a closed one-parameter subgroup, etc.
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1. Induced actions

Let G be a locally compact second countable Abelian group and H a co-compact
subgroup of G. Given a measure preserving action S = (Sh)h∈H of H on a standard
probability space (X, B, µ), we denote by T = (Tg)g∈G the induced action of G on
the product space (G/H × X, λG/H × µ), where λG/H is Haar measure on G/H
(see [Ma], [Zi]). Fix a Borel cross-section s : G/H → G of the natural projection
G → G/H such that s(H) = 0. Then

(1-1) Tg(y, x) := (gy, Sh(g,y)x),

where h(g, y) := −s(gy) + g + s(y) ∈ H. Notice that the mapping h : G× Y → H
is a 1-cocycle, i.e.

h(g1g2, y) = h(g1, g2y) + h(g2, y)

for all y ∈ Y , g1, g2 ∈ G. If S is ergodic then so is T . Denote by UT and US the
Koopman representations of G and H generated by T and S respectively. Then
UT is unitarily equivalent to the unitary representation of G induced by US [Ma].
Recall that given a unitary representation V = (Vh)h∈H of H in a Hilbert space
H, the induced (by V ) representation U = (Ug)g∈G of G is defined on the Hilbert
space L2(G/H, λG/H)⊗H by the formula

U−gf(y) := Vh(g,y)(f(gy)).

Here we consider f ∈ L2(G/H, λG/H)⊗H as a measurable function f : G/H → H
such that

∫
G/H

‖f(y)‖2 dλG/H(y) < ∞. In particular, under the above identifica-
tion, if b ∈ L2(G/H, λG/H) and a ∈ H then for f(y) = (b ⊗ a)(y) = b(y)a and
h ∈ H we obtain

(Uhf) (y) = b(y)Vh(a) = (b⊗ Vha)(y).

Proposition 1.1. Let π : Ĝ → Ĥ stand for the natural projection. Denote by σU

a measure of maximal spectral type of U on Ĝ.
(i) σU ◦ π−1 is a measure of maximal spectral type of V .
(ii) U and V have the same set of spectral multiplicities.

Proof. Let M ⊂ N∪{∞} denote the set of spectral multiplicities of V . Then there
is a decomposition H =

⊕
i∈M

⊕i
j=1Hi,j of H such that

• Hi,j is a cyclic space for V for every pair (i, j). Denote by σi,j a measure
of the maximal spectral type for V ¹ Hi,j . Then

• σi,j ⊥ σi′,j′ if i 6= i′ and
• σi,j ∼ σi′,j′ if i = i′.

It is easy to see that L2(G/H, λG/H)⊗Hi,j is a cyclic space for U . Denote by σ′i,j
a measure of the maximal spectral type of U ¹ (L2(G/H, λG/H)⊗Hi,j). It is easy
to see that

(1-2) σ′i,j ∼ σ′i′,j′ if i = i′.

Let a ∈ H be a cyclic vector for V such that the spectral measure of a is σV . Take
a unit vector b ∈ L2(G/H, λG/H). Then for each h ∈ H,

〈Uh(b⊗ a), b⊗ a〉 = 〈Vha, a〉
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This implies that π projects the spectral measure of b ⊗ a into σV . This yields
σ′i,j ◦ π−1 = σi,j for each pair (i, j). Therefore

(1-3) σ′i,j ⊥ σ′i′,j′ if i 6= i′.

Since L2(G/H, λG/H)⊗H =
⊕

i∈M

⊕i
j=1 L2(G/H, λG/H)⊗Hi,j , we deduce both

(i) and (ii) from (1-2) plus (1-3). ¤

Corollary 1.2. If a G-action T is induced by an H-action S then M(T ) = M(S)∪
{1}.

The “extra” value 1 appears because L2
0(G/H, λG/H)⊗1 is a UT -cyclic subspace

of L2
0(G/H ×X, λG/H × µ).

In the rest of this section we describe the self-joinings of induced actions and
deduce some natural corollaries of this description. These results, which seem to
be of independent interest, will not be used further in the paper.

Denote by V the action of G on the homogeneous space G/H by translations.
The following proposition about induced actions was shown by R. Zimmer in [Zi].

Proposition 1.3.

(i) Let T be an action of G on (X, B, µ). Then the action of G induced by
T ¹ H is isomorphic to the Cartesian product V × T .

(ii) An action T of G is induced by an action of H if and only if T has a factor
isomorphic to V .

Recall that given a dynamical system (Z, ν, T ), a T × T -invariant measure ρ on
the product space Z ×Z such that the coordinate marginals of ρ are both equal to
ν is called a (2-fold) self-joining of T . For the theory of joinings and notions like
relative weak mixing, relative compactness, simplicity and centralizer we refer the
reader to [JuR] and [KaT].

In the following corollary we describe the structure of self-joinings of induced
actions.

Proposition 1.4. Let T be a G-action induced by an ergodic H-action S (see (1-1)
for the notation). Let ρ be an ergodic self-joining of T . Then (Y ×X×Y ×X, ρ, T×
T ) is an induced G-action. More precisely, there are κ ∈ Je

2 (S) and g ∈ G such
that

ρ =
∫

G/H

κ ◦ (Sh(s(y),y) × Sh(s(y),gy))× δy × δgy dλG/H(y).

ρ is the graph of an isomorphism if and only if so is κ. Hence two induced G-actions
are isomorphic if and only if the underlying H-actions are isomorphic.

Proof. We use the notation from (1-1). The projection map Y ×X → Y intertwines
T with V (see (1-1)). Therefore the projection ρ∗ of ρ to Y × Y is an ergodic self-
joining of V . Hence there is g ∈ G such that ρ∗(A × B) = λG/H(A × gB) for all
measurable subsets A,B ⊂ G/H. Disintegrate now ρ with respect to ρ∗:

(1-4) ρ =
∫

G/H

κy × δy × δgy dλG/H(y),
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where Y × Y 3 (y, y) 7→ κy is a measurable field of probability measures on X ×X
such that

(1-5)
∫

Y

κ(1)
y × δy dλG/H(y) =

∫

Y

κ(2)
y × δgy dλG/H(y) = µ× λG/H ,

where κ
(i)
y is the i-th coordinate projection of κy for i = 1, 2 and every y ∈ Y . Since

ρ is T × T -invariant, we deduce from (1-4) and (1-1) that

(1-6) κg′y = κy ◦ (Sh(g′,y) × Sh(g′,gy))

for each g′ ∈ G at a.e. y ∈ G/H. Substituting g′ ∈ H into (1-6) we obtain that κy

is invariant under S × S for a.a. y ∈ G/H. Since µ is ergodic under S, we deduce
from (1-5) that κ

(1)
y = κ

(2)
y = µ for a.a. y ∈ G/H. Thus κy is a self-joining of S for

a.a. y ∈ G/H. Since G acts transitively on Y , the equation (1-6) can be “resolved”
in a standard way:

κy = κ ◦ (Sh(s(y),y) × Sh(s(y),gy)), y ∈ G/H,

for certain self-joining κ of S (formally, put κ = κH and g′ = s(y) into (1-6)).
Moreover, κ is ergodic.

The remaining assertions of Proposition 1.4 follow immediately. ¤
Corollary 1.5.

(i) If S is either relatively weakly mixing or relatively compact with respect to
some factor A then T is either relatively weakly mixing or relatively compact
(respectively) with respect to the factor induced by A.

(ii) T is simple if and only if S has pure point spectrum.
(iii) C(T ) = {(Id×R)Tg | g ∈ G,R ∈ C(S)}.
(iv) If F is a factor of T that contains the standard factor V then F is an induced

action of a factor of S.

We note that T may also have factors which do not contain V (for instance in
the case considered in Proposition 1.3(i)).

2. Preliminaries

We start with an important algebraic lemma. Let G be a countable Abelian
group, H a subgroup of G and v : G → G a group automorphism. We set

L(G,H, v) := {#({vi(h) | i ∈ Z} ∩H), h ∈ H \ {0}}.

Algebraic Lemma 2.1 ([KwL], [Da3]). Given any subset E ⊂ N, there exist a
countable Abelian group G, a subgroup H ⊂ G and an automorphism v : G → G
such that

(i) E = L(G,H, v) and
(ii) the subgroup of v̂-periodic points in Ĝ is countable and dense.

We now recall the definition of rank one. Let S = (Sg)g∈Rd be a measure
preserving action of Rd on a standard σ-finite measure space (Y, C, ν).
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Definition 2.2.

(i) A Rokhlin tower or column for S is a triple (A, f, F ), where A ∈ C, F is
a cube in Rd and f : A → F is a measurable mapping such that for any
Borel subset H ⊂ F and an element g ∈ Rd with g + H ⊂ F , one has
f−1(g + H) = Sgf

−1(H).
(ii) S is said to be of rank one (by cubes) if there exists a sequence of Rokhlin

towers (An, fn, Fn) such that the volume of Fn goes to infinity and for any
subset C ∈ C of finite measure, there is a sequence of Borel subsets Hn ⊂ Fn

such that
lim

n→∞
ν(C4f−1

n (Hn)) = 0.

Denote by R ⊂ X ×X the T -orbit equivalence relation. A Borel map α from R
to a compact Abelian group K is called a cocycle of R if

α(x, y) + α(y, z) = α(x, z) for all (x, y), (y, z) ∈ R.

Two cocycles α, β : R → K are cohomologous if there is a µ-conull subset B ⊂ X
such that

α(x, y) = φ(x) + β(x, y)− φ(y) for all (x, y) ∈ R ∩ (B ×B).

for a Borel map φ : X → K. Given a cocycle α : R→ K and a closed subgroup H ⊂
K, we can define a new flow Tα,H = (Tα,H

t )t∈R on the space (X ×K/H,µ×λK/H)
by setting

Tα,H
t (x, k + H) = (Ttx, α(Ttx, x) + k + H).

This flow is called a compact group extension of T . Given a character χ ∈ K̂, we
denote by UT α,χ the following unitary representation of R in L2(X,µ):

(UT α,χ(t)f)(x) := χ(α(T−tx, x))f(T−tx).

There is a natural decomposition of UT α,H into an orthogonal sum

UT α,H =
⊕

χ∈K̂/H

UT α,χ,

where K̂/H is considered as a subgroup of K̂.
If a transformation S commutes with T (i.e. S ∈ C(T )) then a cocycle α ◦ S :

R → K is well defined by α ◦ S(x, y) := α(Sx, Sy). The important cohomology
equation on α mentioned in Section 0 can now be stated as follows

(2-1) α ◦ S is cohomologous to v ◦ α

for some S ∈ C(T ) and a group automorphism v : K → K.
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3. (C, F )-flows and (C,F )-cocycles and their rank-one counterparts

To prove Main Theorem we will use the (C, F )-construction (see [Da1] and ref-
erences therein). We now briefly outline its formalism. Then we will interpret it
in the standard language of cutting-and-stacking. Let two sequences (Cn)n>0 and
(Fn)n≥0 of subsets in R be given such that:

— Fn = [0, hn), h0 = 1,
— Cn is finite, #Cn > 1, min Cn = 0,
— Fn + Cn+1 ⊂ [0, hn+1 − 1),
— (Fn + c) ∩ (Fn + c′) = ∅ if c 6= c′, c, c′ ∈ Cn+1,
— limn→∞ hn

#C1···#Cn
< ∞.

Let Xn := Fn × Cn+1 × Cn+2 × · · · . Endow this set with the standard product
Borel structure. The following map

(fn, cn+1, cn+2) 7→ (fn + cn+1, cn+2, . . . )

is a Borel embedding of Xn into Xn+1. We now set X :=
⋃

n≥0 Xn and endow it
with the inductive limit standard Borel structure. Given a Borel subset A ⊂ Fn,
we denote by [A]n the following cylinder: {x = (f, cn+1, . . . , ) ∈ Xn | f ∈ A}. The
family of all cylinders generates the entire σ-algebra B on X.

Let R stand for the tail equivalence relation on X: two points x, x′ ∈ X are R-
equivalent if there is n > 0 such that x = (fn, cn+1, . . . ), x′ = (f ′n, c′n+1, . . . ) ∈ Xn

and cm = c′m for all m > n. Of course, R is a Borel subset of X ×X. It is easy to
see that there is only one probability (non-atomic) Borel measure µ on X which is
invariant under R. This means that every Borel isomorphism of X whose graph is
a subset of R preserves µ. We note that the restriction of µ on Xn is an infinite
product νn× κn+1× κn+2× · · · , where κi is the equidistribution on Ci and νn+1 is
a measure proportional to λR ¹ Fn. Hence for each n ≥ 0 and a subset A ⊂ Fn,

µ([A]n)/µ(Xn) = λR(A)/hn.

We now isolate a subset X̃ ⊂ X such that

X̃ ∩Xn := {x = (fn, cn+1, cn+2, . . . ) ∈ Xn | ck 6= 0 infinitely often}.

Then Xn is Borel, R-saturated and µ(X̃) = 1. Now we define a Borel flow T =
(Tt)t∈R on X̃ by setting

Tt(fn, cn+1, . . . ) := (t + fn, cn+1, . . . ) whenever t + fn < hn, n > 0.

This formula defines Tt partly on X̃. When n →∞, Tt extends to the entire X̃. It is
easy to see that the mapping X̃×R 3 (x, t) 7→ Ttx ∈ X̃ is Borel and Tt1Tt2 = Tt1+t2

for all t1, t2 ∈ R. Moreover, the T -orbit equivalence relation coincides with R ¹ X̃.
It follows that T is µ-preserving. In what follows we do not distinguish objects
(sets, transformations, etc.) if they agree a.e. That is why we consider that T is
defined on the entire X.

Definition 3.1. We call T the (C, F )-flow associated with (Cn+1, Fn)n≥0.

It is easy to see that T is of rank one (see the comment after Lemma 3.3). Hence
it is free and ergodic.
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We recall a concept of (C,F )-cocycle (see [Da2]). Given a sequence of maps
αn : Cn → K, n = 1, 2, . . . , we first define a Borel cocycle α : R∩ (X0 ×X0) → K
by setting

α(x, x′) :=
∑
n>0

(αn(cn)− αn(c′n)),

whenever x = (0, c1, c2, . . . ) ∈ X0, x′ = (0, c′1, c
′
2, . . . ) ∈ X0 and (x, x′) ∈ R. To

extend α to the entireR, we first define a map π : X → X0 as follows. Given x ∈ X,
let n be the least positive integer such that x ∈ Xn. Then x = (fn, cn+1, . . . ) ∈ Xn.
We set

π(x) := ( 0, . . . , 0︸ ︷︷ ︸
n+1 times

, cn+1, cn+2, . . . ) ∈ X0.

Of course, (x, π(x)) ∈ R. Now for each pair (x, y) ∈ R, we let

α(x, y) := α(π(x), π(y)).

It is easy to verify that α is a well defined cocycle of R with values in K.

Definition 3.2. We call α the (C, F )-cocycle associated with (αn)∞n=1.

Suppose we have an invertible measure preserving transformation S of (X, µ)
such that S maps bijectively R(x) on R(Sx) for µ-a.a. x ∈ X. (This condition
holds, for instance, if S ∈ C(T ).) Then for each cocycle α : R → K, we can define
a cocycle α ◦ S by setting

α ◦ S(x, y) := α(Sx, Sy), (x, y) ∈ R.

Adapting the argument from [Da2, Section 4] we obtain the following lemma.

Lemma 3.3. Let z̄ = (zn)∞n+1 be a sequence of positive reals. Suppose that

∑
n>0

#(Cn4(Cn − zn))/#Cn < ∞.

For each m > 0, we set

X z̄
m := [0, hm − z1 − · · · − zm)×

∏
n>m

(Cn ∩ (Cn − zn)) ⊂ Xm.

Then the transformation Sz̄ of (X, µ) is well defined by setting

(3-1) Sz̄(x) := (z1 + · · ·+ zm + fm, zm+1 + cm+1, zm+2 + cm+2, . . . )

for all x = (fm, cm+1, cm+2, . . . ) ∈ X z̄
m, m = 1, 2, . . . . Moreover, Sz̄ commutes with

T and T z1+···+zm → Sz̄ weakly as m →∞.
Let v be a continuous group automorphism of K and let

C◦m := {c ∈ Cm ∩ (Cm − zm) | αm(c + zm) = v(αm(c))}.

If

(3-2)
∑
n>0

(1−#C◦n/#Cn) < ∞
8



then the cocycle α ◦ Sz̄ is cohomologous to v ◦ α.

We now interpret the (C,F )-construction in terms of the common geometrical
cutting-and-stacking techniques. Recall that we have two sequences (Fn)n≥0 and
(Cn)n>0 as above. Our purpose is to construct inductively a sequence of towers
Xn, n = 1, 2, . . . . On the (n− 1)-st step of the construction we have a tower Xn−1,
which is a rectangular of height hn. Denote the width of Xn−1 by wn−1. Let Cn =
{cn,1, cn,2, . . . , cn,rn

} with 0 = cn,1 < · · · < cn,rn
. We cut Xn−1 into rn subtowers of

equal width wn := wn−1/rn and call them copies of Xn−1. Enumerate these copies
from the left to the right. Then we put a rectangle of height cn,i+1 − cn,i − hn−1

and width wn over the i-th copy of Xn−1, 1 ≤ i < rn, and a rectangle of height
hn − cn,rn

− hn−1 and width wn over the rn-th copy of Xn−1. These additional
rectangles are called “spacers”. Thus we obtain a family of enumerated rn towers of
the same width but of (possibly) different length which is no less than hn−1. Stack
them in the following way: put the second tower over the top of the first tower, the
third tower on the top of the second one and so on. Thus we obtain a new tower
of height hn and width wn and call it the n-th tower.
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Figure 3.1. n-th tower Xn.

We draw an example of tower Xn (turned horizontally) with rn = 3 at Figure 3.1.
Continuing this process infinitely many times we construct X1 ⊂ X2 ⊂ · · · .

Since Xn is embedded into R2, we endow it with the induced Lebesgue measure,
say µn. Let (X, µ) be the inductive limit of the sequence (X1, µ1) ⊂ (X2, µ2) ⊂ · · · .
Now we define a flow T = (Tt)t∈R on X geometrically as follows: Tt moves a point
x ∈ Xn up with a unit speed until it reaches the top of Xn, n = 1, 2, . . . . Then T
is well defined on X (more precisely, on a µ-conull subset of X).

To define a (C, F )-cocycle of T , suppose that a sequence of maps αn : Cn → K
is given. Given x ∈ X and n > 0, we set cn(x) := cn,i ∈ Cn if x belongs to the i-th
copy of Xn−1 in Xn. If x does not belong to any copy of Xn then we set cn(x) := 0.
Then two points x, x′ ∈ X are T -orbit equivalent if and only if cm(x) = cm(x′) for
all sufficiently large m. We now put α(x, x′) :=

∑
m>0(αm(cm(x))− αm(cm(x′))).

Then α is a cocycle of T , namely the (C,F )-cocycle associated with (αn)∞n=1. The
most important property of α is that if x belongs to the i-th copy of Xn−1, i 6= rn,
and t = cn,i+1 − cn,i then α(Ttx, x) = αn(cn,i+1)− αn(cn,i).

We note that the (C, F )-cocycles for T are analogues of the Morse cocycles (see
[Go] and references therein) called also rank-one cocycles or cocycles of product
type for Z-actions.

4. Realization of sets containing 1 as spectral multiplicities

Let E be a subset of positive integers. By Algebraic Lemma 2.1, there exist
a compact Polish Abelian group K, a closed subgroup H of K and a continuous
automorphism v of K such that

E = L(K̂, K̂/H, v̂).
9



The subgroup of v-periodic points in K will be denoted by K. It is countable and
dense in K by Lemma 2.1. Let ξ1 and ξ2 be two rationally independent positive
reals in R. Fix a partition

N = W1 tW2 t
⊔

a∈K
Na

of N into infinite subsets. To construct the desired realization we define inductively
a sequence (Cn, hn, αn)∞n=1, where Cn is a finite subset of R, hn is a positive real
and αn : Cn → R is a mapping. Suppose we have already constructed this sequence
up to index n. Consider two cases.

If n + 1 ∈ Na for some a ∈ K then we denote by ma the least positive period of
a under v. Now we set

zn+1 := manhn, rn := n3ma,

Cn+1 := hn · {0, 1, . . . , rn − 1},
hn+1 := rnhn + 1,

Let αn+1 : Cn+1 → K be any map satisfying the following conditions

(A1) αn+1(c + zn+1) = v ◦ αn+1(c) for all c ∈ Cn+1 ∩ (Cn+1 − zn+1),
(A2) for each 0 ≤ i < ma, there is a subset Cn+1,i ⊂ Cn+1 such that

Cn+1,i − hn ⊂ Cn+1,

αn+1(c) = αn+1(c− hn) + vi(a) for all c ∈ Cn+1,i and∣∣∣∣
#Cn+1,i

#Cn+1
− 1

ma

∣∣∣∣ <
2

nma
.

If n + 1 ∈ Wi for i = 1, 2 then we set

Cn+1 := {jhn | 0 ≤ j < n} t {j(hn + ξi) + nhn | 0 ≤ j < n},
hn+1 := 2nhn + nξi,

αn+1(c) := 1K for all c ∈ Cn+1.

Thus, Cn+1, hn+1, αn+1 are completely defined.
Denote by (X,µ, T ) the (C, F )-flow associated with the sequence (Cn+1, Fn)n≥0,

where Fn := [0, hn). Let R stand for the tail equivalence relation (or, equivalently,
the T -orbit equivalence relation) on X. Denote by α : R → K the cocycle of R
associated with the sequence (αn)n>0. Let λK/H stand for the Haar measure on
K/H. We denote by Tα,H the following flow on the space (X ×K/H, λK/H):

Tα,H
t (x, k + H) := (Ttx, α(Ttx, x) + k + H), t ∈ R.

Our purpose in this section is to prove the following theorem.
10



Theorem 4.1. M(Tα,H) = E ∪ {1}.
Since ∑

n>0

#(Cn4(Cn − zn))
#Cn

=
∑
n>0

2
n2

,

it follows from Lemma 3.3 that the transformation Sz̄ of (X, µ) is well defined by
the formula (3-1) and Sz̄ ∈ C(T ).

It follows from (A1) and the definition of Cn+1 that (3-2) is satisfied. Hence by
Lemma 3.3,

(4-1) the cocycle α ◦ Sz̄ is cohomologous to v ◦ α.

We need more notation. Given a ∈ K and χ ∈ K̂, let

lχ(a) := m−1
a

ma−1∑

i=0

χ(vi(a)),

where ma stands for the least positive period of a under v.

Lemma 4.2. Let χ ∈ K̂. Then
(i) UT α,χ(hn) → lχ(a) · I as Na − 1 3 n →∞, a ∈ K.
(ii) UT α,χ(hn) → 0.5(I + UT α,χ(−ξj)) as Wj − 1 3 n →∞, j = 1, 2.

Proof. We will show only (i). The other claim is shown in a similar way. Let n ∈ Na.
Take any subset A ⊂ Fn. We note that [A]n =

⊔
c∈Cn+1

[A + c]n+1. Geometrically,
the set [A + c]n+1 is the intersection of the cylinder [A]n with the corresponding
(to c) copy of the “tower” Xn in Xn+1. For each 0 ≤ i < ma, consider the set⊔

c∈Cn+1,i
[A + c]n+1 = [A + Cn+1,i]. These sets are mutually disjoint and their

union is “almost” the entire [A]n in view of the inequality from (A2). Moreover,
by (A2), if x ∈ [A + Cn+1,i]n+1,i then α(x, T−hnx) = vi(a). Therefore

UT α,χ(hn)1[A]n(x) =
ma−1∑

i=0

χ(α(x, T−hnx))1[A+Cn+1,i]n+1(T−hnx) + ō(x)

=
ma−1∑

i=0

χ(vi(a))1[A+Cn+1,i+hn]n+1(x) + ō(x)

where ō(x) is a function whose L2-norm is small. We note that 1[A+Cn+1,i+hn]n+1 =
1[Fn+Cn+1,i+hn]n+11[A]n Hence

UT α,χ(hn)−
ma−1∑

i=0

χ(vi(a))1[Fn+Cn+1,i+hn]n+1 → 0

weakly as Na − 1 3 n → ∞, where the function 1[Fn+Ca
n+1,i+hn]n+1 ∈ L∞(X, µ) is

considered as a multiplication operator in L2(X, µ).
It remains to use the inequalities from (A2) and a standard fact that for any

sequence C ′n ⊂ Cn such that #C ′n/#Cn → δ for some δ > 0 we have

1[Fn+C′n]n → δI weakly as n →∞.
11



¤
Proof of Theorem 4.1. We first verify that Tα is weakly mixing. Let UT α(t)f =
exp (iλt)f for some f ∈ L2(X×K), f 6= 0 and λ ∈ R. It follows from Lemma 4.2(ii)
that

UT α(hn) → 0.5(I + UT α(−ξj))

and hence
exp(ihnλ) → 0.5(1 + exp(−iλξj))

as Wj − 1 3 n → ∞, j = 1, 2. Therefore |1 + exp(−iλξj)| = 2 which implies
exp(−iλξj) = 1 for j = 1, 2. Since ξ1 and ξ2 are rationally independent, λ = 0. It
remains to show that Tα is ergodic. If χ 6= 1 then there is a ∈ K with lχ(a) 6= 1. If
f ∈ L2(X,µ) is invariant under UT α,χ then Lemma 4.2(i) yields f = lχ(a)f . Hence
f = 0. If χ = 1 then UT α,χ = UT . Since T is ergodic, each UT α,χ-invariant function
is constant. Thus, we have shown that UT α is weakly mixing. Hence UT α,H is also
weakly mixing.

To show that M(Tα,H) = E∪{1} we consider a natural decomposition of UT α,H

into an orthogonal sum
UT α,H =

⊕

χ∈K̂/H

UT α,χ.

It is enough to prove the following:
(a) UT α,χ has a simple spectrum for each χ,
(b) UT α,χ and UT α,ξ are unitarily equivalent if χ and ξ belong to the same

v̂-orbit,
(c) the maximal spectral types of UT,χ and UT,ξ are mutually singular if χ and

ξ belong to different v̂-orbits.
For each ε > 0 and n > 0, there are a partition of Fn into intervals ∆0, . . . , ∆Mn

and reals t1, . . . , tMn such that maxj diam∆j < ε, ∆j = Ttj ∆0 and the mapping
[∆j ]n 3 x 7→ α(T−tj x, x) ∈ K is constant for each 1 ≤ j ≤ Mn. This implies (a).

It is straightforward that (4-1) implies (b).
If χ and η are non-equivalent then there is a ∈ K such that lχ(a) 6= lη(a).

Moreover, Uhn

T,χ → lχ(a)I and Uhn

T,η → lη(a)I as Na − 1 3 n →∞ by Lemma 4.2(i).
Hence the maximal spectral types of UT,η and UT,χ are mutually singular. Thus
(c) holds. ¤

Now we are going to show the following claim.

Proposition 4.3. M(Tt) = E for each t 6= 0.

For that we need an auxiliary statement from [LeP]. Given a Borel measure σ
on R, we let Aσ := {t ∈ R | σ ∗ δt 6⊥ σ}.
Lemma 4.4([LeP]). Let σ be a finite Borel measure on R. If there are an analytic
function a on R and a sequence of continuous characters ξn ∈ R̂ such that ξn →∞
in R̂ and ξn → a weakly in L2(R, σ) then for each t0 ∈ Aσ there exists c ∈ C with
|c| = 1 and a(t + t0) = ca(t) for each t ∈ R.

Proof. 1 Given two measures λ and κ on R, we write λ ¿ κ if λ is absolutely
continuous with respect to κ and the Radon-Nikodym derivative dλ/dκ is bounded.

1This is a fragment of the proof of Proposition 5 from [LeP]. We include it here by a recom-
mendation of the referee.
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Fix t0 ∈ A(σ). Passing to a subsequence if necessary, we can assume that 〈ξn, t0〉 →
c for some c ∈ C, |c| = 1. Take an arbitrary positive finite Borel measure λ so that
λ ¿ σ and λ ∗ δ−t0 ¿ σ. Since ξn → a weakly in L2(R, σ), it follows that ξn → a
weakly in L2(R, κ) for each measure κ ¿ σ. Therefore

∫
〈ξn, t + t0〉 dλ(t) =

∫
〈ξn, t〉 d(λ ∗ δ−t0)(t)

→
∫

a(t) d(λ ∗ δ−t0)(t)

=
∫

a(t + t0) dλ(t).

On the other hand,
∫
〈ξn, t + t0〉 dλ(t) → c

∫
a(t) dλ(t).

Since the above convergences also take place for each λ1 ¿ λ, we obtain a(t+ t0) =
ca(t) for λ-a.e. t ∈ R. Since λ is continuous and a is analytic, a(t + t0) = ca(t) for
all t ∈ R. ¤
Proof of Proposition 4.3. Denote by σT a probability measure of maximal spectral
type for T . We first show that AσT = {0}. It follows from Lemma 4.2(ii) that

UT α,H (hn) → 0.5(I + UT α,H (−ξj))

weakly as Wj − 1 3 n →∞, j = 1, 2. We deduce from this and Lemma 4.4 that for
each t0 ∈ AσT and j = 1, 2, there exists a complex number cj such that

1 + exp(2πiξj(t + t0)) = cj(1 + exp(2πiξjt))

for all t ∈ R. This yields cj = 1 and exp(2πiξjt0) = 1 for j = 1, 2. Since ξ1 and ξ2

are rationally independent, t0 = 0.
Thus if 0 6= t ∈ R then σT ∗ δt ⊥ σT . Hence the natural projection R →

R/tZ is one-to-one on a subset of full σT -measure. This implies that M(Tα,H) =
M(Tα,H

t ). ¤

5. Realization of sets containing 2 as spectral multiplicities

Now let E be a subset of N such that 1 6∈ E. In this section we will realize the
set E ∪ {2}. To this end we combine the technique of compact group extensions
developed in the previous section with a technique of “Cartesian products”. We
illustrate the latter with a couple of auxiliary lemmata.

Lemma 5.1. Let T be a weakly mixing flow with a simple spectrum. Let ξ1, ξ2

be two rationally independent reals. Suppose that the weak closure WC(UT ) of the
group {UT (t) | t ∈ R} contains the following operators:

(5-1) 0.5(I + UT (jξ1)), 0.5(I + UT (ξ2)) and 0.5(I + UT (ξ2 − ξ1)),

j = 1, 2. Then the product flow T × T := (Tt× Tt)t∈R has a homogeneous spectrum
of multiplicity 2 in the orthocomplement to the constants.

13



Proof. Let h be a cyclic vector for UT . Denote by C the closure of the span of 3
vectors h⊗h,UT (ξ1)h⊗h and UT (ξ2)h⊗h. It follows from (5-1) that C is invariant
under the following operators:

UT (jξ1)⊗ I + I ⊗ UT (jξ1), j = 1, 2,(5-2)

UT (ξ2)⊗ I + I ⊗ UT (ξ2),(5-3)

UT (ξ2 − ξ1)⊗ I + I ⊗ UT (ξ2 − ξ1).(5-4)

Slightly modifying the argument from [Ag] and [Ry1], we deduce from (5-2) and
(5-3) that

UT (nξ1)h⊗ h ∈ C and UT (nξ2)h⊗ h ∈ C
for all n ∈ Z. Applying (5-4) to U(ξ1)h⊗ h we obtain that UT (2ξ1 − ξ2)h⊗ h ∈ C.
Applying (5-2) with j = −2 step by step infinitely many times and then with
j = 2 infinitely many times we obtain that U(2nξ1 − ξ2)h ⊗ h ∈ C for each n ∈
Z. Next, applying (5-3) to U(2ξ1 − ξ2)h ⊗ h, we deduce that U(2ξ1 − 2ξ2) ∈ C.
Then again apply infinitely many times (5-2) with j = −2 and j = 2 to obtain
U(2nξ1 − 2ξ2)h⊗ h ∈ C. And so on. Finally, we obtain that

U(2nξ1 + mξ2)h⊗ h ∈ C for all n,m ∈ Z.

Hence U(t)h⊗h ∈ C for all t ∈ R. Since h is cyclic for U , it follows that H⊗h ⊂ C
and therefore C = H⊗H.

Denote by m the spectral multiplicity function for (Tt × Tt)t∈R and denote by σ
the measure of maximal spectral type for T . By the above, m(λ) ≤ 3 for σ ∗ σ-a.a.
λ ∈ R.

On the other hand, since T is weakly mixing and σ × σ =
∫
R σλ dσ ∗ σ(λ) and

σλ is invariant under the flip mapping R2 3 (y, z) 7→ (z, y) ∈ R2, it follows that
m(λ) ∈ {2, 4, . . . } ∪ {∞}. Hence m(λ) = 2 a.e. ¤
Lemma 5.2. Let U and V be unitary representations of R with simple spectrum.
Assume that there are sequences an →∞, bn →∞ a′n →∞ and b′n →∞ such that

(i) U(an) → 0.5(I + U(ξ)) and V (an) → 0.5(I + V (ξ)),
(ii) U(bn) → 0.5(dI + U(ξ)) and V (bn) → 0.5(eI + V (ξ)),
(iii) U(a′n) → 0.5(I + U(η)) and V (a′n) → 0.5(I + V (η)) and
(iv) U(b′n) → 0.5(d′I + U(η)) and V (b′n) → 0.5(e′I + V (η))

for some ξ, η, d, e, d′, e′ ∈ R. If d 6= e, d′ 6= e′ and ξ and η are rationally independent
then U ⊗ V has also a simple spectrum.

Proof. Let v1 and v2 be cyclic vectors for U and V . Denote by C the U ⊗ V -cyclic
subspace generated by v1 ⊗ v2. It follows from (i) and (ii) that

(I + U(ξ))v1 ⊗ (I + V (ξ))v2 ∈ C.
(dI + U(ξ))v1 ⊗ (eI + V (ξ))v2 ∈ C.

Hence U(ξ)v1 ⊗ v2 + v1 ⊗ V (ξ)v2 ∈ C and dU(ξ)v1 ⊗ v2 + ev1 ⊗ V (ξ)v2 ∈ C. This
implies, in particular that U(ξ)v1 ⊗ v2 ∈ C. In a similar way, U(−ξ)v1 ⊗ v2 ∈ C.
Thus, (U(ξ) ⊗ I)C = C. In a similar way, we deduce from (iii) and (iv) that
(U(η) ⊗ I)C = C. Hence (U(nξ + mη) ⊗ I)C = C for all n,m ∈ Z. Since η and ξ
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are rationally independent, C is invariant under the unitary representation U ⊗ I.
Since C 3 v1⊗v2, it follows that C ⊃ H1⊗v2. Since C is U⊗V -invariant, we deduce
that C ⊃ H1 ⊗H2 and hence C = H1 ⊗H2. ¤

Let K, H, v,K, ξ1, ξ2 be as in the previous section. We will assume that ξ2 > ξ1

and put ξ3 := ξ2 − ξ1. Fix a partition

N =
3⊔

i=1

⊔

a∈K
Ma,i tNa

of N into infinite subsets. As in the previous section, to construct the desired
realization we define inductively a sequence (Cn, hn, αn)∞n=1, where Cn a finite
subset of R, hn is a positive real and αn : Cn → R a mapping. Suppose we have
already constructed this sequence up to index n. Consider two cases.

Case 1. If n + 1 ∈ Na for some a ∈ K then we denote by ma the least positive
period of a under v. Now we set

zn+1 := manhn, rn := n3ma,

Cn+1 := hn · {0, 1, . . . , rn − 1},
hn+1 := rnhn,

Let αn+1 : Cn+1 → K be any map satisfying the following conditions
(A1) αn+1(c + zn+1) = v ◦ αn+1(c) for all c ∈ Cn+1 ∩ (Cn+1 − zn+1),
(A2) for each 0 ≤ i < ma there is a subset Cn+1,i ⊂ Cn+1 such that

Cn+1,i − hn ⊂ Cn+1,

αn+1(c) = αn+1(c− hn) + vi(a) for all c ∈ Cn+1,i and∣∣∣∣
#Cn+1,i

#Cn+1
− 1

ma

∣∣∣∣ <
2

nma
.

Case 2. If n + 1 ∈ Ma,i for some a ∈ K and i = 1, 2, 3 then we denote by ma

the least positive period of a under v. Now we set

zn+1 := man(2hn + ξi),

D1
n+1 := hn · {0, 1, . . . , man− 1},

D2
n+1 := {j(hn + ξi) + mnnhn | 0 ≤ j < man},

Cn+1 :=
n2−1⊔

j=0

(jzn+1 + (D1
n+1 tD2

n+1)),

hn+1 := man3(2hn + ξi),

Let αn+1 : Cn+1 → K be any map satisfying the following conditions
(B1) αn+1(c + zn+1) = v ◦ αn+1(c) for each c ∈ C1

n+1 ∩ (C1
n+1 − zn+1),

(B2) for each 0 ≤ l < ma there is a subset Dn+1,l ⊂ D1
n+1 such that

Dn+1,l − hn ⊂ D1
n+1,

αn+1(c) = αn+1(c− hn) + vl(a) for all c ∈ Dn+1,l and∣∣∣∣
#Dn+1,l

#D1
n+1

− 1
ma

∣∣∣∣ <
2

nma
,

(B3) αn+1(c) = 1K for each c ∈ D2
n+1.
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Thus, Cn+1, hn+1, αn+1 are completely defined.
Denote by (X,µ, T ) the (C, F )-flow associated with the sequence (Cn+1, Fn)n≥0,

where Fn := [0, hn). Let R stand for the tail equivalence relation (or, equivalently,
the T -orbit equivalence relation) on X. Denote by α : R → K the cocycle of R
associated with the sequence (αn)n>0. We denote by Tα,H the following flow on
the space (X ×K/H, λK/H):

Tα,H
t (x, k + H) := (Ttx, α(Ttx, x) + k + H), t ∈ R.

The following lemma is an analogue of Lemma 4.2. It can be proved in a similar
way by using (A2), (B2) and (B3). We leave details to the reader.

Lemma 5.3. Let a ∈ K. Then for each χ ∈ K̂ and j > 0
(i) UT α,χ(hn) → lχ(a) · I as Na − 1 3 n →∞ and
(ii) UT α,χ(jhn) → 0.5(lχ(ja)I + UT α,χ(−jξi)) as Ma,i − 1 3 n →∞.

Our purpose in this section is to prove the following theorem.

Theorem 5.4. The transformation T×Tα,H is weakly mixing and M(T×Tα,H) =
E ∪ {2}.
Proof. To show that M(T ×Tα,H) = E ∪{2} we consider a natural decomposition
of UT×T α,H into an orthogonal sum

UT×T α,H =
⊕

χ∈K̂/H

(UT ⊗ UT,χ).

It is enough to prove the following:
(a) UT ⊗ UT has a homogeneous spectrum 2 in the orthocomplement to the

constants,
(b) UT ⊗ UT α,χ has a simple spectrum if χ 6= 0,
(c) UT ⊗ UT α,χ and UT ⊗ UT α,ξ are unitarily equivalent if χ and ξ belong to

the same v̂-orbit,
(d) the measures of maximal spectral type of UT ⊗ UT α,χ and UT ⊗ UT α,ξ are

mutually singular if χ and ξ are not on the same v̂-orbit.
It follows from Lemma 5.3(ii) that WC(UT ) contains operators 0.5(I+UT (−ξ1)),

0.5(I +UT (−2ξ1)), 0.5(I +UT (−ξ2)) and 0.5(I +UT (ξ1−ξ2)). Therefore we deduce
(a) from Lemma 5.1.

Fix a nontrivial χ ∈ K̂. The unitary representation UT α,χ has a simple spectrum
(see the proof of Theorem 3.1). Moreover,

UT α,χ(hn) → 0.5(I + UT α,χ(−ξ1)), UT (hn) → 0.5(I + UT (−ξ1))
as M0,1 − 1 3 n →∞ and

UT α,χ(hn) → 0.5(I + UT α,χ(−ξ2)), UT (hn) → 0.5(I + UT (−ξ2))
as M0,2 − 1 3 n →∞.

by Lemma 5.3(ii). Since χ is nontrivial, it follows from Algebraic Lemma 1.1 that
there is a ∈ K with lχ(a) 6= 1. Again by Lemma 5.3(ii),

UT α,χ(hn) → 0.5(lχ(a)I + UT α,χ(−ξ1)), UT (hn) → 0.5(I + UT (−ξ1))
as Ma,1 − 1 3 n →∞ and

UT α,χ(hn) → 0.5(lχ(a)I + UT α,χ(−ξ2)), UT (hn) → 0.5(I + UT (−ξ2))
as Ma,2 − 1 3 n →∞.
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Therefore Lemma 5.2 implies (b).
As in the proof of Theorem 4.3 we can define a transformation Sz̄ of (X,µ) by

the formula (3-1). Then Sz̄ ∈ C(T ). It follows from (A1), (B1) and the definition of
Cn+1 that (3-2) is satisfied. Hence by Lemma 3.3, the cocycle α◦Sz̄ is cohomologous
to v◦α. Therefore the unitary representations UT,χ and UT,ξ are unitarily equivalent
whenever χ and ξ lie on the same orbit of v̂. This yields (c).

To prove (d), we first find a ∈ G such that lχ(a) 6= lξ(a) (see claim (ii) of
Algebraic Lemma). It follows from Lemma 5.3(i) that

UT (hn)⊗ UT α,χ(hn) → lχ(a)I and UT (hn)⊗ UT α,ξ(hn) → lξ(a)I

as Na − 1 3 n →∞. This implies (d).
Finally, since M(T × Tα,H) 63 1, it follows that T × Tα,H is weakly mixing. ¤

Remark 5.5. It follows from Lemma 5.3(ii) that UT α,H (hn) → 0.5(I + UT α,H (−ξi))
as M0,i − 1 3 n → ∞, j = 1, 2, 3. As in Proposition 4.3 we can deduce from this
fact that M(Tα,H) = M(Tα,H

t ) for each t 6= 0.

6. Spectral multiplicities for ergodic actions of other groups

The main result of the paper extends partly to actions of some other locally
compact second countable Abelian groups G. If G is compact then each ergodic
action T of G has a pure point spectrum and M(T ) = {1}. Therefore from now on
we assume that G is non-compact.

Corollary 6.1. Let G be a torsion free discrete countable Abelian group and let E
be a subset of N such that E ∩{1, 2} 6= ∅. Then there is a weakly mixing free action
S of G such that M(S) = E.

Proof. In the case when G = Z see [Da3] and references therein. Consider now
the case when G 6= Z. Then there is an embedding φ of G into R such that the
subgroup φ(R) is dense in R. Indeed, it is well known that G embeds into QN. In
turn, the later group obviously embeds into R. It remains to note that if an infinite
subgroup of R is not isomorphic to Z then it is dense in R.

By Theorem 0.1, there is a weakly mixing action T of R such that M(T ) = E.
Then the composition T ◦ φ = (Tφ(g))g∈G is a weakly mixing action of G with
M(T ◦ φ) = M(T ) = E. ¤

The first claim of the following lemma is, in fact, a slight generalization of The-
orem 4.1. If we replace (relax) “weak mixing” in its statement with “ergodic” then
it follows from Theorem 4.1 via Proposition 1.1.

Lemma 6.2. Let A be a compact second countable Abelian group. Let E be a
subset of N with 1 ∈ E.

(i) There is a weakly mixing free action W of R×A such that M(W ) = E.
(ii) For each torsion free discrete countable Abelian group G, there is a weakly

mixing free action W of G×A such that M(W ) = E.

Proof. (i) Let the objects K,H, v be defined exactly as in Section 4. We now set
K ′ := K ×A, H ′ := H × {0} and v′ := v × Id. It is straightforward that

(6-1) L(K̂ ′, K̂ ′/H ′, v̂′) = L(K̂, K̂/H, v̂) = E.
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Moreover, the subgroup of v′-periodic points is countable and dense in K ′. We
now construct the skew product flow Tα′,H′

in the same way as in Section 4 but
with K ′,H ′, v′ instead of K, H, v. We note that Tα′,H′

acts on the space (Y, ν) :=
(X ×K/H ×A,µ× λK/H × λA). Denote by W = (Wt,a)(t,a)∈R×A the action of the
product group R×A on (Y, ν) generated by Tα′,H′

and the action of A by rotations
along the third coordinate. Then W is free. Since Tα′,H′

is weakly mixing, so is
W . Denote by UW the corresponding Koopman unitary representation of R×A in
L2

0(Y, ν). We have a decomposition

L2(Y, ν) =
⊕

χ∈K̂/H,η∈Â

Hχ,η,

where Hχ,η := L2(X, µ) ⊗ χ ⊗ η. We know from Section 4 that Hχ,η is a UT α′,H′ -
cyclic subspace for each pair χ, η. It is also a UW -cyclic subspace. The unitary
operator UW (0, a) acts on Hχ,η by multiplying on η(a). Hence if σχ,η is a measure
of maximal spectral type of UT α′,H′ ¹ Hχ,η then the measure σχ,η × δη on R̂ × Â
is a measure of maximal spectral type of UW ¹ Hχ,η. As was shown in Section 4,
if (χ, η) and (χ′, η′) belong to different v′-orbits then σχ,η ⊥ σχ′,η′ . It follows that
σχ,η × δη ⊥ σχ′,η′ × δη′ . On the other hand, if (χ, η) and (χ′, η′) belong to the
same v′-orbit then σχ,η ∼ σχ′,η′ . Moreover, η = η′ by the definition of v′. Hence
σχ,η × δη ∼ σχ′,η′ × δη′ . These facts plus (6-1) imply that M(W ) = E.

(ii) Consider two cases. If G is not Z then (ii) follows from (i) in the very same
way as Corollary 6.1 follows from Theorem 0.1. If G is Z then we need to modify
the proof of the main result from [Da3] (only the case when E 3 1) in the very
same way as we modified the proof of Theorem 4.1 in (i). ¤

Let T1 and T2 be probability preserving ergodic actions of locally compact second
countable Abelian groups G1 and G2 respectively. Let T1⊗T2 stand for the product
action (g1, g2) 7→ T1(g1) × T2(g2) of the product group G1 × G2. It is easy to see
that

(•) if T1 has a simple spectrum then M(T1 ⊗ T2) = M(T2) ∪ {1}.
As far as we know, this fact was first used in [Fi] for Z2-actions.

Corollary 6.3. Let E 3 1. If one of the following conditions is satisfied:
(i) G contains a closed one-parameter subgroup,
(ii) G = D×F , where D is a torsion free discrete countable Abelian group and

F is a locally compact second countable Abelian group,
then there is a free weakly mixing action T of G such that M(T ) = E.

Proof. (i) It follows from [HR, Theorem 24.30] that G is topologically isomorphic
to a product R×G′, where G′ is a locally compact Abelian group.

Suppose first that G′ is non-compact. We now claim that there is a weakly
mixing free G′-action with a simple spectrum. To prove this claim we need several
standard auxiliary facts which we state here without proof.

− Let A be the set of all G′-actions on a standard probability space (X,µ). A
G′-action is considered as a continuous map from G′ to the Polish (in the
weak topology) group of all transformations of (X,µ). Then A endowed
with the topology of uniform convergence on the compact subsets in G′ is
Polish.
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− The conjugacy class of every free G′-action is dense in A.
− The subset of all weakly mixing G′-actions and the subset of all G′-actions

with a simple spectrum are both Gδ in A.
− There is a weakly mixing free G′-action and there is a free G′-action with

a simple spectrum.
The claim follows from them via a generic argument. Now we deduce the assertion
of the Corollary 6.3 from Theorem 0.1 and (•).

Consider now the second case when G′ is compact. Then the assertion of the
Corollary 6.3 follows from Lemma 6.2(i).

(ii) is proved in a similar way by replacing the references to Theorem 0.1 and
Lemma 6.2(i) with references to Corollary 6.1 and Lemma 6.2(ii) respectively. ¤

We note that if G is connected then (i) is satisfied. If G has no non-trivial
compact subgroups then one of the conditions of Corollary 6.3 is satisfied.

We claim that Theorem 0.1, the case 2 ∈ E, holds true if we replace R-actions
with actions of groups G which are isomorphic to the product of Rd with torsion
free discrete Abelian groups. However to prove this fact one has to pass all the way
of Section 5 by adjusting all the arguments from there to the case of Rd-actions.
We leave this routine to the reader.
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